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Abstraet A new approach based on nonlinear re- 
gression for the mapping of quantitative trait loci 
(QTLs) using complete genetic marker linkage maps is 
advanced in this paper. We call the approach joint 
mapping as it makes comprehensive use of the informa- 
tion from every marker locus on a chromosome. With 
this approach, both the detection of the existence of 
QTLs and the estimation of their positions, with corre- 
sponding confidence intervals, and effects can be realiz- 
ed simultaneously. This approach is widely applicable 
because only moments are used. It is simple and can save 
considerable computer time. It is especially useful when 
there are multiple QTLs and/or interactions between 
them on a chromosome. 
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Introduction 

Systematic and efficient mapping of quantitative trait 
loci (QTLs) depends on the establishment of complete 
genetic marker linkage maps. Research on QTL map- 
ping has progressed slowly in the past because of the 
lack of such complete maps. Since the 1980s, however, 
rapid progress has have been made in this field due to 
the discovery of restriction fragment length polymor- 
phism (RFLP) a kind of highly-variable molecular 
genetic marker, which enables complete genetic marker 
linkage maps to be established (Beckman and Soller 
1986; Tanksley et al. 1989). To-date, highly-saturated 
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RFLP linkage maps with wide coverage of chromo- 
somes have been obtained in many plants. It is antici- 
pated that complete linkage maps with a high density of 
marker loci will be established for most of the important 
crops in the near future. 

QTL mapping involves detecting the existence of 
QTLs and estimating their exact positions. A number of 
different approaches have been proposed both for QTL 
detection, such as the t-test (Ellis 1986; Simpson 1989) 
and ANOVA (Li et al. 1993), and for QTL location, such 
as maximum likelihood estimation (Weller 1986; Luo 
and Kearsey 1989), moment estimation (Mather and 
Jinks 1971; Snape et al. 1985; Wu etal. 1991), and 
regression analysis (Haley and Knott 1992). Moreover, 
the likelihood ratio test (Simpson 1989; Lander and 
Botstein 1989) can be used for both the detection and the 
location of QTLs. 

Most of the methods which have been developed are 
based on the model of one marker locus linked to one 
QTL. Since they exploit the statistical information of 
each marker separately they are less efficient and less 
reliable (Lander and Botstein 1989). They may even give 
false results when there are more than one QTL on the 
same chromosome contributing to the genetic variation. 
These approaches, therefore, are not ideal given that 
only nearly complete marker linkage maps have been 
availabe. 

For this reason, Lander and Botstein (1989) ad- 
vanced an approach, called interval mapping, which 
could overcome the drawbacks mentioned above. Some 
studies have been made with this approach (Luo and 
Kearsey 1992; Carbonell et al. 1992), but the approach 
itself is not perfect. First, like other approaches based on 
maximum likelihood estimation, the hypothesis of the 
normality of the phenotypic distribution of a QTL 
genotype in the model may not always be true because 
there is often dominance and epistasis among polygenes. 
Second, the statistical meaning of a one-lod support 
interval is not clear enough because it does not indicate 
the probability level of confidence. Third, the determina- 
tion of a suitable threshold for hypothesis testing is 
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complex and difficult. And lastly, its computation is 
both complicated and time-consuming. Recently, Haley 
and Knott (1992) have proposed a new method of 
interval mapping based on regression, which makes the 
computation much simpler without, apparently, losing 
the efficiency of estimation. But it still faces the problem 
of threshold determination. 

In this paper we advance a new approach to QTL 
mapping, in which both detection and location can be 
realized simultaneously. Because it makes comprehen- 
sive use of the information provided by all the markers 
on the same chromosome, it is named the joint mapping 
approach. 

Principles 
Material 

In this paper,  only the first generat ion backcross popula t ion (BC1, or 
F~ x Px) will be discussed. In such a populat ion,  two alleles (A~ and 
A2) of a locus segregate into two genotypes with equal propor t ions  (1 
AaA~:I AIA2). A QTL is considered to exist only when it consists of 
two different alieles so that it contr ibutes to the variation of the 
related quanti tat ive trait�9 

One -QTL-mapp ing  

Mathematical model Assume that in BC 1 the two genotypes of a 
# 2  and variances 0" 1 and (~TL (QIQI and Q1Q2) have means 1/1 and �9 2 

0.2, respectively. For  a given marker  locus, the means and variances of 
its two genotypes (GIG * and GIG2) can be writ ten as follows: 

M~ = (1 - r)1/1%- r/~ 2 (1) 

m 2 = r1/1%- (1 r)1/2 (2) 

V 1 - -  (1 r)a 2 %- r0.22 + r(1 r)(1/1 l/a) 2 (3) 

V 2 r0. } %- (1 -- r)0.~ %- r(1 - r)(1/1 - t@2 (4) 

where r denotes the recombinat ion rate between the marker  and the 
assumed that  0.1 0.2 a2;hence, from QTL. Theoretically, it is often 2 2 

(3) and (4), we have 

Vl _ [/9_ 0.2 @ r (1  r)(1/1 J12) 2. (3)  

From (1) and (2) it can be found that  

M~ M 2 = (1 - 2r)(/q - / / 2 ) .  (6) 

Let y - M~ - M 2, x = 1 2r, and b - 1/~ - #2 (we define it as the 
effect of the QTL), then (6) becomes 

y - bx. (7) 

Assuming Haldane 's  map  function, 

r = 12[1 - e x p ( -  0.02[z zQ])] (8) 

where z and z a are the posi t ion coordinates  on the map  (unit: cM) of 
the marker  and the QTL, respectively. Thus, in (7) 

x = e x p ( - 0 . 0 2 1 z  za[). (9) 

So y is determined by b, z and zQ. 
Since the posi t ion of each marker  is already known on a complete 

linkage map,  a set of parired data (Yi, zi), i - 1, 2, . . . ,  n (assuming a 

total of n markers), can be obtained in an experiment. Therefore, 
according to (7) and (9), a two-parameter  nonlinear  regression model 
can constructed as follows: 

Yi = bxi(zQ) 4- e i (10) 

where e~ is the residual error�9 Since y~ is the difference between two 
means,  it should show asymptotically a normal  distribution namely 

2 2 �9 �9 
Yi ~ N[bxi(zo), aei], or ei ~ N[0,  %), In accordance with the central 
limit theorem. F rom (5) it is possible to show that 

0"2 __ 2 [ 0  .2 %- ri(1 r / ) ( l l  - -  ~ 2 ) 2 ] / ( N / 2 )  (ll) 

where N is the sample size. The formula shows that  a2~ is related to r~ 
so that  it varies with different marker  loci. 

Estimation of  parameters Since a~ is not  equal to each other, the 
approach of weighted least square (WLS) is the best way to estimate 
the parameters  b and z a in model  (10). The residual sum of square is 

n n 

Q = ~. ci'2 ~ wi[vi, bxi(zo)] 2 (12) 
i 1 i -1  

/ 2 
in which e' 2 = ei/Gi, wl = 1/Gi. Obviously, e'j ~ N(0, I). Hence ~:'i is an 
iidN(O, 1). 

For  a given value of z a, the WLS estimate of b is 

~)= ~WiXi(ZQ)Yi  ( 1 3 )  

Zw,[x,%)] ~" 

Changing the value of zQ with a step length of 1 cm a long  the whole 
linkage map , t he  point  ~a which makes Q minimum can be found; that  
is, Qmin - O(b, za)" 

Test of significance Since e'~ is an iidN(O, 1), the Qm~o must  be 
distributed as a ~2 (n  - 2 )  (note that  two degrees of freedom are lost 
here because two parameters  have been estimated). The fitness of the 

2 model, therefore, can be tested by mens of a g -test" that  is, acceptance 
�9 2 ' 

of the model  reqmres Qmi~ <)%.0S( n 2). ^ 
If the model  is fit, a further test of significance orb  is needed�9 Here 

the null hypothesis is H0: b = 0 (there is no QTL), and the alternative 
hypothesis is H 1: b r 0 (there is a QTL). Similarly, since 4 is an iidN (0, 
1), there would be approxamitely (Johansen 1984) 

Q(b =0)  Q,nln ~ Z2(1) (14) 

where Q(b - 0) denotes the minimum residual sum of squares when 
�9 - 2 b = 0 ,  whmh, refermg to (12), equals to s i. Thus, when 

2 . . . . . . .  Q(b = 0) - Qmln - X~ (1), In which c~ IS a given significance level, we will 
refuse H 0 but accept H 1. 

Determinat ion of the significance level depends on the number  of 
chromosomes  involved. A higher level is required when the number  
increases, because considering many chromosomes  at the same time 
may increase the risk that  false positives will occur�9 The overall null 
hypothesis is that  there are no QTLs on all chromosomes�9 If the 
required overall significance level is %, then the nominal  significance 
level must  be 

~=1 (1-%)vm (15) 

where m is the number  of the chromosomes.  

Determination of confidence intervals Desides the point  estimate of a 
QTL's  posi t ion (~a), we also need to know its confidence interval on 
the chromosome�9 Since ~:'~ is an iidN(O, 1), it follows (Hamil ton 1986) 
that  Q(Zo) Qmln ~ )~2(1), where Q(za) denotes the min imum residual 
sum of squares depending on z a. And hence the 95% confidence 
interval of z a is determined by 

Q(za) Qm~n-< 3.84. (16) 



Two QTL mapping 

If the one-QTL model is not appropriate, then there may be two 
QTLs, denoted by QTL 1 and QTL> Assuming that  the positions and 
effects of QTL~ and QTL 2 are ze~, b~ and ze2, b 2, respectively, and the 
effect of interaction between b~ and b 2 is b~,2; then given that  the 
recombination rate between a marker and QTL1 and that  between 
the marker and QTL2 are r~ and r> respectively, it can be found that  

y = b lx  1 + b2x 2 4- b1,aX1,2 (17) 

where, similar to (7), y = M 1 - M2, x 1 = 1 - 2r~, x 2 = 1 - 2r2, where- 
a S X l , 2 =  1 - - r  1 - r  2. 

Neglecting the interaction effect (i.e., bl,2 = 0) this relationship 
follows a four-parameter nonlinear regression model of the type 

Yi = bl Xli(ZQ1) -}- b2 x2i(ZQ2) -}- g'i (18) 

where both xli(z()l) and X2i(ZQ2 ) are determined by (9). Similar to the 
one-QTL model, parameters in model (18) can be estimated with 
WLS, and the fitness of the model can be tested with a )(2-~st Ehere 
Qm~n ~ X2( n - 4)]. There is no need to test the significance of bl and b2 
here, because the fact that  the one-QTL model is not fit already 
indicates the existance of more than one QTL. As to the confidence 
intervals of zel and zQ2, both  of them can be determined by (16). 

In order to reach the point of Qm~n quickly, it is necessary to have 
suitable initial values of ze, and ze2. They can be found by means of a 
t-test or an ANOVA on e;eery marker locus. Theoretically, maximal t 
or F values would appear on the markers closest to either QTL~ or 
QTL2. 

The interaction between the two QTLs should be taken into 
account when model (18) is not appropriate. If the complete two-QTL 
model is still unfit, more than two QTLs may exist on the chromo- 
some. 

Mult i -QTL mapping 

If interactions among three or more QTLs are negligible, the two- 
QTL model can be extended to the case of multiple QTLs, of which 
the general formula, like (17), is 

l 1 

y = ~ bixi + ~ bijxi j (19) 
i=1 i<j 

Examples 
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One-QTL model 

To illustrate the feasibility ofj oint mapping in the case of 
only one QTL on a chromosome, let us consider a 
theoretical example given by Lander and Botstein 
(1989). In this example, it was assumed that there were 
12 chromosomes being tested in an organism, each 
chromosome was 100 cM long and had six marker loci 
in total, one every 20 cM from the left to the right. There 
was a QTL on each of chromosomes 1-5 (Table 1), but 
no QTL on chromosomes 6-12. The environmental 
noise had a standard deviation of 1. The sample size was 
250. All the simulated data were produced on a com- 
puter. 

The results are listed in Table 2. As expected, the 
one-QTL model gives a fit to all the chromosomes. 
Similar to the results of Lander and Botstein 
(1989), obtained by interval mapping, every chromo- 
some witha QTL except chromosome 5 has a significant 
estimate b, and the significance increases as the 
QTL's effect increases, as does the reliability of the 
estimation of the QTL's p~ition. With regard to chro- 
mosome 5, although its b does not reach the 5% 
overall sig-nificance level, it is still much greater than 
those of the chromosomes without QTLs, and will be 
significant if a 5% nominal significance level is used. 
Hence, in practice, it is necessary to re-examine such 
kinds of uncertain chromosomes by further experi- 
ments. 

Table 1 Positions and effects of QTLs on the first five chromosomes 
based on a one-QTL model 

Chromosome zQ (cM) b a bo (b/a) 

1 
where I is the number  of QTLs, and the definitions of other symbols 2 
(y, bi, xi, xij) are similar to those in (17). Obviously, there is no 3 
difference in principle between mult i-QTL mapping and two-QTL 4 
mapping. We will not, therefore, discuss them in detail in the present 5 
paper. 

70 1.50 1.358 1.105 
49 1.25 1.420 0.880 
27 1.00 1.468 0.681 

8 0.75 1.505 0.498 
30 0.50 1.531 0.327 

Table 2 Estimation results for 
the 12 chromosomes based on a 
one-QTL model 

~Z2.o5 = 9.488 (dr = 6 - 2 = 4) 
b When ao = 0.05, ){2 = Zo2.oo,~27 
= 8,189. *, significancant; ?, un- 
certain 
~ Calculated by the formula er 2 = 
V -  b2/4, where V is the total 
variance 

C h r o m o s o m e  Omin a b Q(b ---- O) -- Qmin b ZQ 95% Confidence 6 c 
interval of zQ 

1 2.499 1.577 154.54" 69 61-77 
2 0.856 1.314 105.73" 51 42-64 
3 2.922 0.988 56.02* 24 2-37 
4 2.555 0.894 38.69* 9 0-38 
5 0.554 0.318 5.64? 22 0-100 
6 2.444 0.116 0.62 - 
7 3.059 - 0.198 1.80 - - 
8 1.336 0.071 0.23 - 
9 0.585 - 0.219 2.31 - 

10 1.496 0.087 0.43 - 
11 1.593 0.161 1.45 - 
12 4.455 0.213 2.06 - 

1.355 
1.424 
1.488 
1.503 
1.560 
1.568 
1.568 
1.568 
1.568 
1.568 
1.568 
1.568 
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Two-QTL model 

In the case of two QTLs on a chromosome, we also use a 
theroretical example~ given by Lander and Botstein 
(1989). In this example, it was assumed that there were 
two QTLs located respectively at positions 50 cM and 
130cM from the left end of a chromosome, which was 
200 cM long and had 11 marker loci in total, one every 
20 cM from the left to the right. Both the QTLs had an 
effect of 0.9. The sample size was again 250. In addition, 
we also consider a repulsion-phase situation in which in 
the above example the effect of the QTL located at 
130cM was changed to -0 .9 .  Simulated data were 
again produced on a computer. 

The results show that the one-QTL model is unfit in 
these two examples (Qmin = 60.49 and 69.54 respectively, 
P < 0.001) and the two-QTL model may be needed. 
After a t-test on every marker locus (Table 3), it is 
evident that, on both the coupling-phase chromosome 

Table 3 T-test results on the coupling-phase (CPC) and the repul- 
sion-phase (RPC) chromosome based on a two-QTL model 

Marker Position (cM) t-value" 

CPC RPC 

1 0 4.559** 0.693 
2 20 3.543** 1.085 
3 40 8.629** 2.301" 
4 60 8.261"* 1.069 
5 80 5.474** 2.616"* 
6 100 5.839** - 0.588 
7 120 7.513"* - 0.530 
8 140 4.806** -1.853 
9 160 6.537** - 1.435 

10 180 2.207* -1.871 
11 200 1.283 -0 .565 

a ,  or **, significant at 5% or 1% level 

(CPC) and the repulsion-phase chromosome (RPC), 
there should be two QTLs, one located between 0 and 
80 cM, and the other between 100 and 200 cM, but it is 
not easy to decide suitable values of zQ1 and zQ2 on the 
RPC. However, they can be determined by applying the 
one-QTL model to each of the only-one-QTL-contain- 
ing regions because there are enough markers within 
each of them (Table 4). 

It is necessary to note that the estimate of a QTL's 
effect obtained in this way does not reflect the real effect 
(b) of the QTL but, rather, a mixture (denoted by b') 
containing a contribution from the other QTL on the 
same chromosome. Assuming the recombination rate 
between QTL 1 and QTL 2 is r, it is easy to show that 
b] = bl + (1 - 2r)b2, b~ = b 2 q- (1 - 2r)bl, or 

bl - (1 - 2r)b' z 
b l -  4 r ( 1 - r )  ' (20) 

b~ - (1 - 2r)b i (21) 
b2 = 4r(1 - r) 

with (20) and (21), estimates orb 1 and b2 in the examples 
can be obtained (Table 4). They are indeed closer to their 
real values. 

With the values of ZQ1 and zQ2 provided by the one- 
QTL model, the results off estimation using the two- 
QTL model are listed in Table 5. The results shows that 
the two-QTL model gives a fit to both the CPC and the 
RPC, and the estimates are also ideal. 

It is worth noting that, according to the results in 
Table 3, in the case of the repulsion phase, the offset in 
effect of the two QTLs may decrease the t value on each 
marker locus considerably so as to make the method of 
t-testing less powerful. In fact, in accordance with the 
results of t-tests alone, it is impossible to draw the 
conclusion that there is a QTL with a negative effect at 
position 130 cM in this example. This reveals the draw- 

Table 4 Estimation results in one-QTL-containing regions using the one-QTL model 

Chrom. Region (cM) Qmin Z~2 95% confidence 
interval of zQ 

Q(b' = 0) - Qmin 

CPC 0-80 3.575" 51 44-57 
100-200 8.041 b 125 111-132 

RPC 0-80 1.582 a 44 27-59 
100-200 1.802 b 134 122-154 

1.414 203.21 
1.248 154.46 
0.616 43.45 

- 0.753 66.59 

1.196 
0.976 
0.761 

-0 .879 

a 2 )%.05 = 7.815 (df = 5 - 2  = 3) 
b )~o.o5 = 9.488 (df = 6 -- 2 = 4) 

Table 5 Estimation results us- 
ing the two-QTL model 

a~ 2 = 14.067(df = 11 - 4  = 7) Z0.o5 

C h r o m ,  Qmin 2Q1 ~Q2 

CPC 11.803 47 129 
RPC 10.928 49 130 

95% confidence interval 

ZQ1 ZQ2 

37-55 
35-70 

118-154 
121-147 

1.129 
0.882 

~2 

0.919 
- 0.980 
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backs of the approaches studying single markers one- 
at-a-time. 

Discussion 

In the introduction we have mentioned some problems 
concerning the method of interval mapping. It is obvi- 
ous, however, that in the joint mapping method these 
problems disappear. Firstly, since only moments are 
used in joint mapping, it is unnecessary to know the 
exact theoretical form of the quatitative trait distribu- 
tion in the experimental population. Therefore, the ap- 
proach is widely applicable. Secondly, the threshold for 
significance testing in joint mapping can be determined 
conveniently and the statistical confidence intervals of 
QTL positions can also be easily obtained. Thirdly, no 
complex mathematical knowledge is needed to under- 
stand the principle of joint mapping and the procedure 
of computation is also simple. Therefore, it is easy to 
write a computer program and very little computer time 
is required. It is especially useful when multiple QTLs 
are involved and/or there are interactions between them 
on a chromosome. Such complicated cases may make 
the use of interval mapping impractical (Haley and 
Knott  1992). Additionally, joint mapping is also very 
powerful and efficient. In theory,, its power is ultimited if 
there are as many marker loci as needed. We will discuss 
this matter in another paper. 

A factor possibly limiting the reliability of joint map- 
ping might come from the approximation of Haldane's 
map function, of which the hypothesis that there is no 
interference among single exchanges may not always be 
true. However, the numbers of double and multiple 
exchanges are generally much smaller than those of the 
related single exchanges and their standard errors. It 
seems, therefore, that even though there may be com- 
plete inteference, errors caused by the approximation of 
the map function can still be neglected compared with 

corresponding homozygous genotype (A2Aa). For the 
same reason, the results are also basically suitable for a 
population of recombinant inbred lines as long as the 
parameter of recombination rate (r) in the models is 
substituted by R [ = 2r/(1 + 2r)] (Simpson 1989). As for 
the F 2 population, the basic principle of joint mapping 
is, as we will discuss elsewhere, again applicable. 
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